分别以BET粒度为0.15μm和0.23μm的碳化钨粉末与钴湿磨压制制备成WC-90%Co试样条,分别以Fsss粒度为1.0μm和1.5μm的碳化钒粉末与钴湿磨压制制备成VC-95%Co试样条。将以上四种试样条分别于1 100、1 150、1 200℃进行真空烧结,将烧结后的试样条研磨抛光后采用X衍射仪和扫描电镜研究碳化钨和碳化钒在固相钴中的固溶情况。研究结果表明:两种粒度的WC均于1 150℃逐渐溶解到Co中形成γ-固溶体,其固溶度随温度升高而增大,1 200℃固溶完全;两种粒度的VC粉末于1 100℃逐渐溶解到Co中形成γ-固溶体,1 150℃固溶完全。
通过对试样进行深度腐蚀,利用扫描电镜研究不同碳含量的V9Cr5Mo2高速钢中碳化物的三维形貌,并进一步讨论了碳化物的形态与合金凝固结晶过程的关系。结果表明,V9Cr5Mo2高速钢中碳化物主要由VC及以铬、钼为主的复合碳化物组成;共晶VC为枝晶状,先析出VC为不规则块状、开花状、卵石堆积状及团球状;以铬为主的复合碳化物为曲面板条状;富钼复合碳化物为鱼骨状。合金中含碳量1.6%时,碳化钒主要为共晶VC;碳含量为2.5%时,VC主要为大量共晶VC及部分不规则团块状、开花状的初生VC;碳含量为3.2%及4.2%时,VC为大量初生VC。随着含碳量的增加,VC的形态也由卵石堆积状向分散分布的团球状转变。
316L不锈钢3D打印粉体引入纳米V8C7颗粒通过球磨混粉的方式在316L不锈钢3D打印粉体表面引入纳米V8C7颗粒,利用选区激光熔化(SLM)技术制备了V8C7/316L复合材料试样及点阵结构件。在优化的SLM工艺参数下获得的复合材料实体件的致密度高达99.4%;在激光熔化-凝固过程中,V8C7通过分解-析出机制生成的VCx增强相成为纳米级形核质点,其在细化奥氏体相晶粒的同时沿奥氏体晶界分布,可以阻止奥氏体晶粒在快速凝固过程中的长大;纳米尺度的VCx增强相及超细的近等轴晶金属基体均有助于大幅提升增材制造V8C7/316L结构的比强度。