数据治理内容
以企业财务管理为例,会计负责管理企业的金融资产,遵守相关制度和规定,同时接受审计员的监督;审计员负责监管金融资产的管理活动。数据治理扮演的角色与审计员类似,其作用就是确保企业的数据资产得到正确有效的管理。
由于切入视角和侧重点不同,业界给出的数据治理定义已经不下几十种,到目前为止还未形成一个统一标准的定义。
ITSS WG1认为数据治理包含以下几方面内容
(1)确保信息利益相关者的需要评估,以达成一致的企业目标,这些企业目标需要通过对信息资源的获取和管理实现;
(2)确保有效助力业务的决策机制和方向;
(3)确保绩效和合规进行监督。
数据治理主动数据治理
主动数据治理方法消除了“数据治理官僚化”这一认识,因为主数据的授权已推给上游的业务用户,使数据管理员处于很少被打扰的角色,他们将不会成为诸如订单管理或出具等关键业务流程的瓶颈。
销售和营销均受益,因为可更迅速且经济有效地完成营销活动,在启动活动之前无需前期数据纠正。财务上也受益,因为将一次性捕获新客户需要的所有数据元素,添加新客户的流程包括提取第三方内容并计算限额,然后将该信息传回 ERP 系统。
数据治理数据性要求
作为数据应用的内容本身,将会有更多的性要求,因此,数据整个生命周期的安全将是企业在数字化融合下的重要考量内容,数据在采集、传输、处理、交换、销毁全生命中,应该采用哪些技术手段,保障数据不被获取,数据如何管理才能平衡业务发展和安全管控之间矛盾。于此相关的数据技术、数据库审计技术、数据交换技术、网络监控技术等的,该类技术在数字化建设浪潮中将迎来快速发展的机遇。
派客动力数据治理
派客动力敏感数据发现系统具备智能记忆功能,用户已经确认的敏感字段无需重复确认。系统按照用户的敏感数据或已进行预设的敏感数据特征去系统中筛查敏感数据,筛查出的结果会经人工干预进行确认,为了快速确认敏感数据,可利用系统中的批量设置功能,不再需要一个字段一个字段的查看,通过找到与该字段有关联的敏感数据进行批量确认即可。当表结构根据业务发生变化时,系统自动开启的智能记忆功能,将已确认好的敏感数据不再进行二次及多次发现。