PCI-E密码卡
PCI-E密码卡采用PCI-E总线技术的高速密码设备,按照国家密码管理局关于PCI密码卡的相关技术规范研究。
支持SMI/SM6、SM2、SM3、SM4等国产密码算法以及DES、3DES、AES、AES192、AES256、 RSA、 SHA1 等多种算法,能够为各类安全平台提供多线程、多进程和多卡并行处理的高速密码运算服务,满足其对数字签名/验证、非对称/对称加、数据完整性校验、真随机数生成、密钥生成和管理等功能的要求,保证敏感数据的机密性、真实性、完整性和抗抵赖性。
该系列密码卡支持Windows、Linux、FreeBSD等主流操作系统,提供符合《密码设备应用接口规范》要求的接口和国际通用标准接口,已广泛应用于签名验证服务器、IPSec/SSLVP网关、防火墙等安全设备以及电子管理、安全公文传输、数据库加密等软件系统:产品符合《信息系统安全等级保护基本要求》三级及以上信息系统相关技术要求,市场前景广阔。
PCIE密码卡
技术涉及一种基于PCle接口的密码卡及该密码卡的数据加密方法,涉及密码卡及数据加密领域。目的在于解决现有的普通密码卡密钥存储量小、数据传输延迟、响应速度慢的问题。ARM处理器和FPGA模块通过高速片内总线进行互连,ARM处理器的存储信号输出输入端与存储模块的存储信号输入输出端连接,FPGA模块的通信信号输入输出端与PCle接口的通信信号输出输入端连接,PCle接口与外部服务器连接。PCle接口接收外部服务器发送的业务处理请求包,并将业务数据存储到FPGA模块内部的RAM中;FPGA模块向ARM处理器请求业务权限并启动算法进行加密运算;ARM处理器通知FPGA模块启动PCle接口将数据回传至外部服务器。实现一个完整的密码卡功能。
PCIE密码卡
高速信号布线,布线是在布局之后,按照原理图连线设计铜箔的走线。在布线过程中,也可适当合理调整布局尽量使连线短,从而减少串扰。在高速数字信号布线时,靠近多电源层的信号层布线应远离电源,高速密码卡通过PCIE插槽与PC机进行高速数据信号的传输,采用关分对走线,可尽量避免信号完整性问题。差分信号中间一般不能加地线,否则会破坏差分对信号之间的耦合效应。而差分信号布线完成之后,可在PCB高速信号周围进行敷铜,将空余没有走线的部分用接地导线全部铺满,能够提高电路的抗干扰能力。保持差分对的对称性是PCB布线的关键,若关分对长度不匹配,降低传输速率的同时也会影响系统读写数据准确性。为保证系统在同一周期议取数据有效,差分信号的延迟差需保持在允许范围内,所以其布线长度必须严格等长。为此,设计蛇形走线按照系统时序要求调节可解决这一问题。