首先分离是从无序到有序的过程,热力学第二定律说明从无序到有序的分离过程是一个熵减过程,因此不是一个自发的过程。分离技术不断面临新的挑战和机遇,尤其是随着生物技术的不断发展,越来越多,越来越复杂的生物分子需要进行分离。生物分子具有种类多、结构复杂、稳定性差、浓度低等特点。从简单到只有一个单元的氨基酸,到几十个氨基酸组成的多肽,再到上百个氨基酸组成的三维结构的蛋白,其分子量越来越大,结构也越来越复杂,对环境越来越敏感,也越来越不稳定,因此分离难度也随着分子量的增加而增加。由于多肽及蛋白被广泛地用于生物制药,随着生物制药的快速发展,其分离方法也相对成熟。
单分散无孔微球由于粒径均一,粒径大小精l确可控,因此把单分散无孔微球填充在层析柱中,其球与球之间形成的空隙大小及形状是可控的。这种空隙大小是由单分散聚合物微球大小决定的,微球越小,间隙越小,因此层析柱的孔隙可以通过改变无孔微球粒径大小来进行精l确调节。纳微已开发出世l界领l先的微球精准制造技术,该技术可以对微球大小,均匀性进行前l所未有的精准控制。利用该技术优势纳微开发出病毒的单分散无孔聚合物层析介质,由于层析柱孔隙大小可控、耐压性好、柱床稳定、柱效高、分辨率高等优点,因此可以显著提高病毒的纯化效率,大幅度提升病毒的纯度。这种方法非常适用实验室分离纯化病毒样品,但该方法使用的是实心球,因此比表面积低,病毒吸附载量低,不适合大规模分离纯化病毒或类病毒(疫l苗)。
以纯化溶瘤病毒为例,由于其在生产过程中存在宿主蛋白等杂质,纯化前 SEC测试纯度为6.5%。纯化采用两种基质相同的介质,其表面化学功能也很一致,主要区别是前者是无孔实心的层析介质,而后者是传统的多孔层析介质。层析纯化的方法是阴离子交换吸附然后梯度洗脱(Bind-elute)模式。从层析图谱可以看出,在洗脱及CIP过程中无孔介质洗脱杂质更小,峰值更低,意味着上样过程中结合的杂质会更少,有利于表面结合的病毒分子纯化。通过对层析洗脱液SEC纯度分析比较,发现用传统的多孔层析介质实验得到的病毒样品纯度为54%(图 ),而用无孔的同类型介质实验得到的病毒纯度达到接近90%(图 )。