推广 热搜: 韩版  还可  格式  制作工艺  氢气  避暑山庄  收购ACF  求购ACF  回收ACF  液压阀 

光栅原理 、光纤光栅原理

   日期:2023-04-07     浏览:52    评论:0    
核心提示:光栅的工作原理及特点光栅分为3D立体光栅,光栅尺,安全光栅,复制光栅,全息光栅,反射光栅,透射(衍射)光栅.基本上都是由一系列等宽等间距的平行狭缝组成,在1毫米的长度上往往刻有N多条的刻痕。刻痕处不透

光栅的工作原理及特点

光栅分为3D立体光栅,光栅尺,安全光栅,复制光栅,全息光栅,反射光栅,透射(衍射)光栅.基本上都是由一系列等宽等间距的平行狭缝组成,在1毫米的长度上往往刻有N多条的刻痕。刻痕处不透光,未刻处透光,我们称之为透射光栅,另一种光栅是反射光栅,有些需要进行特殊的镀膜处理,根据这种阴阳效果演变出更多的图形镜,图案镜等,简单原理就像是手电筒对着手指投影到对面墙壁,看到的图形.只是一个是微光一个是宏光制做.犹如在发丝上雕刻,工艺的难易不同. 最早的光栅是1821年由德国科学家J.夫琅和费用细金属丝密排地绕在两平行细螺丝上制成的。因形如栅栏,故名为“光栅”。现代光栅是用精密的刻划机在玻璃或金属片上刻划而成的。光栅是光栅摄谱仪的核心组成部分,其种类很多。按所用光是透射还是反射分为透射光栅、反射光栅。反射光栅使用较为广泛;按其形状又分为平面光栅和凹面光栅。此外还有全息光栅、正交光栅、相光栅、炫耀光栅、阶梯光栅等。

(光栅尺)应用于: 数控加工中心,机床,磨床,铣床,自动卸货机,金属板压制和焊接机,机器人和自动化科技, 生产过程测量机器,线性产品, 直线马达, 直线导轨定位。

(立体光栅)应用于:印刷,展示,立体相片,具有立体效果,通过角度或摆产生幻变,动画,缩放使图像列漂亮,已成为办公文具,家居装饰用户首选产品.

(全息光栅)应用于:商标防伪,印刷,光学仪器,激光演示等.

(反射光栅)应用于:大同小异,光学仪器等

(透射光栅)应用于:光学仪器,激光演示,激光玩具…等产品.

光纤光栅的作用与原理?

   光纤光栅的原理概述及特征参量光纤光栅的形成方式主要是使用各类激光使光纤产生轴向的折射率周期性变化,从而形成永久性空间的相位光栅,其作用实质上是在纤芯内形成一个(透射或反射)滤波器或反射镜,将确定频率/波长的导模反射,原理类似多层增反膜,其滤波波长称为布拉格波长,在确定条件下布拉格波长等于光栅所在位置的有效折射率乘以光栅几何周期,而有效折射率和光栅周期会随温度和应力状态改变,这也是光纤光栅应用于应力及温度传感的基础。

     光纤光栅的用途及市场

光纤光栅在光纤通信系统中的应用 光纤光栅作为一种新型光器件,主要用于光纤通信、光纤传感和光信息处理。在光纤通信中实现许多特殊功能,应用广泛,可构成的有源和无源光纤器件分别是:

有源器件:光纤激光器(光栅窄带反射器用于DFB等结构,波长可调谐等);半导体激光器(光纤光栅作为反馈外腔及用于稳定980nm泵浦光源);EDFA光纤放大器(光纤光栅实现增益平坦和残余泵浦光反射);Ramam光纤放大器(布喇格光栅谐振腔);

无源器件:滤波器(窄带、宽带及带阻;反射式和透射式);WDM波分复用器(波导光栅阵列、光栅/滤波组合);OADM上下路分插复用器(光栅选路);色散补偿器(线性啁啾光纤光栅实现单通道补偿,抽样光纤光栅实现WDM系统中多通道补偿);波长变换器 OTDM延时器 OCDMA编码器 光纤光栅编码器。

传感器中

光纤光栅自问世以来,已广泛应用于光纤传感领域。由于光纤光栅传感器具有抗电磁干扰、抗腐蚀、电绝缘、高灵敏度和低成本以及和普通光纤的良好的兼容性等优点,所以越来越受关注。由于光纤光栅的谐振波长对应力应变和温度的变化敏感,所以主要用于温度和应力应变的测量。这种传感器是通过外界参量(温度或应力应变)对Bragg

光纤光栅的中心波长调制来获得传感信息的。因此,传感器灵敏度高,抗干扰能力强,对光源能量和稳定性要求低,适合作精密、精确测量。 光纤光栅传感器现已占以光纤为主的材料的44.2 %。光纤光栅传感器已被用于各个方面,例如高速公路、桥梁、大坝、矿山、机场、船舶、地球技术、铁路、油或气库的监测。传感器的一个发展方向就是多点、分布式传感器,它们主要是利用WDM, TDM, SDM, CDMA的组合。

滤波器中

光纤滤波器是光纤通信中的一个重要的无源器件,光纤光栅的出现真正实现了全光纤型滤波器。光纤光栅滤波器成本低、与光纤兼容、易于集成等优点是光纤通信系统中理想的器件。随着光纤光栅制作技术的成熟和各种波长调节手段的丰富,可以实现从1520~1560nm全波段单通道和多通道的宽带、高反射率的带阻滤波器和窄带、低损耗的带通滤波器,另外应用于增益平坦的光纤光栅滤波器得到了人们的广泛的关注.除此之外光纤光栅还用于sdh系统的色散补偿以及wdm系统的分插复用。

色散补偿

对于普通单模G.652光纤,在1550nm处色散值为正,光脉冲在其中传输时,短波长的光较长波长的光传播得快.这样经过一定距离得传输后,脉冲就被展宽了,形成光纤材料的色散。若使光栅周期大的一端在前,使长波长的光在光栅前端反射,而短波长的光在光栅末端反射,因此短波长的光比长波长的光多走了2L距离(L为光栅长度),这样便在长、短波长光之间产生了时延差,从而形成了光栅的色散。 当光脉冲通过光栅后,短波长的光的时延比长波长的光的时延长,正好起到了色散均衡作用,从而实现了色散补偿。

光纤激光器中

光纤激光器由工作物质、泵浦源和谐振腔三部分组成,增益光纤为产生光子的增益介质;抽运光的作用是作为外部能量使增益介质达到粒子数反转,也就是泵浦源;光学谐振腔由两个反射镜组成,作用是使光子得到反馈并在工作介质中得到放大,在光纤激光器中,构成反射镜的谐振腔一般由一对光纤光栅组成(一只高反光栅,一只低反光栅,中心波长匹配)。泵浦源的抽运光进入增益光纤后被吸收,进而使增益介质中能级粒子数发生反转,当谐振腔内的增益高于损耗时在2只光纤光栅之间便会形成激光振荡,产生激光信号输出。

光栅原理?

栅测量系统是由光栅尺与光栅数显表组成。光栅尺把采集到的位移信号传输到光栅数显表来显示测量结果。光栅尺的位移信号经光电二极管转化为弦波信号,然后经过细分电路和整形电路转化为单片机能够识别的方波信号。

按照工作原理光栅可分为计量光栅和物理光栅 。计量光栅是通过光栅的莫尔条纹现象进行位移的精密测量和控制的,计量光栅一般比较粗;物理光栅主要用作散射元件进行光波长的测定及光谱分析。光栅尺是计量光栅中的一种。

光栅传感器主要是由光源、照明系统、主光栅、指示光栅、接收光学系统、光电接

收元件等组成

光栅的原理及应用

光栅的工作原理是根据物理上莫尔条纹的形成原理进行工作的。

当使指示光栅上的线纹与标尺光栅上的线纹成一角度来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积小,挡光效应弱,光的累积作用使得这个区域出现亮带。

相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个区域出现暗带。这些与光栅线纹几乎垂直,相间出现的亮、暗带就是莫尔条纹。

光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位置则由观察角度来决定。如果我们将这数幅在不同线条上的图像,对应于每个透镜的宽度,分别按顺序分行排列印刷在光栅薄片的背面上,当我们从不同角度通过透镜观察,将看到不同的图像。

光栅传感器的基本原理是什么?莫尔条纹是如何形成的

光栅传感器的基本原理是,光栅的Bragg波长是由lB=2nL决定的。当光纤光栅所处环境的温度,应力,应变或其它物理量发生变化时,光栅的周期或纤芯折射率将发生变化,从而使反射光的波长发生变化。

长周期光纤光栅(LPG)传感器原理,长周期光纤光栅(LPG)的周期一般认为有数百微米,它在特定的波长上可把纤芯的光耦合进包层,其公式是li=(n0-niclad)·L式中,n0—纤芯的折射率,niclad—i阶轴对称包层模的有效折射率。

光栅式传感器指采用光栅叠栅条纹原理测量位移的传感器。光栅是由大量等宽等间距的平行狭缝构成的光学器件。一般常用的光栅是在玻璃片上刻出大量平行刻痕制成,刻痕为不透光部分,两刻痕之间的光滑部分可以透光,相当于一狭缝。

莫尔条纹能从,双色或多色网点之间的干涉,各色网点与丝网网丝之间的干涉,作为附加的因素,由于承印物体本身的特性而发生的干涉。使用莫尔条纹防护系统的目的就在于根据你选定的丝网目数,加网线数,印刷色数和加网角度来预测莫尔条纹。

将两块栅距相同,黑白宽度相同(a=b=τ/2 )的标尺光栅和指示光栅尺面平行放置,将指示光栅在其自身平面内倾斜一很小的角度,以便使它的刻线与标尺光栅的刻线间保持一很小的夹角θ,这样在光源的照射下,两块光栅尺的刻线相交,就形成了即莫尔条纹,

扩展资料

光栅传感器的特点精度高,光栅式传感器在大量程测量长度或直线位移方面仅仅低于激光干涉传感器,在圆分度和角位移连续测量方面,光栅式传感器属于精度***的,大量程测量兼有高分辨力。

感应同步器和磁栅式传感器也具有大量程测量的特点,但分辨力和精度都不如光栅式传感器,可实现动态测量,易于实现测量及数据处理的自动化,具有较强的抗干扰能力,对环境条件的要求不像激光干涉传感器那样严格,但不如感应同步器和磁栅式传感器的适应性强。

光栅主要分两大类一是Bragg光栅也称为反射或短周期光栅,二是透射光栅也称为长周期光栅,光纤光栅从结构上可分为周期性结构和非周期性结构,从功能上还可分为滤波型光栅和色散补偿型光栅,色散补偿型光栅是非周期光栅,又称为啁啾光栅。

莫尔条纹起放大作用,莫尔条纹的节距W与θ角成反比,θ角越小,则放大倍数越大。这样虽然光栅栅距很小,但莫尔条纹却清晰可见,便于测量。

莫尔条纹的移动与栅距的移动成比例,当两光栅尺移动时,莫尔条纹沿着垂直于光栅移动的方向移动。且当光栅尺移动一个栅距,莫尔条纹正好移动一个节距。若光栅尺移动方向改变,莫尔条纹的移动方向也改变。

这样莫尔条纹的位移刚好反映了光栅的栅距位移。即光栅尺每移动一个栅距,莫尔条纹的光强也经历了由亮到暗,再由暗到亮的一个变化周期,这为后面的信号检测电路提供了良好的条件。

起均化误差的作用,莫尔条纹是由许多条刻线共同形成的,例如250线/mm的光栅,10mm长的一条莫尔条纹是由2500条刻线组成的,这样栅距间的固有相邻误差就被平均化了。

参考资料百度百科--光栅式传感器

百度百科--莫尔条纹

“光栅传感器”的基本原理是什么?“莫尔条纹”是如何形成的?有什么特点?

光栅是在一块长条形的光学玻璃上密集等间距平行的刻线,刻线密度为 10~100线/毫米。由光栅形成的叠栅条纹具有光学放大作用和误差平均效应,因而能提高测量精度。

传感器由标尺光栅、指示光栅、光路系统和测量系统四部分组成(见图)。标尺光栅相对于指示光栅移动时,便形成大致按正弦规律分布的明暗相间的叠栅条纹。这些条纹以光栅的相对运动速度移动,并直接照射到光电元件上,在它们的输出端得到一串电脉冲,通过放大、整形、辨向和计数系统产生数字信号输出,直接显示被测的位移量。

传感器的光路形式有两种:一种是透射式光栅,它的栅线刻在透明材料(如工业用白玻璃、光学玻璃等)上;另一种是反射式光栅,它的栅线刻在具有强反射的金属(不锈钢)或玻璃镀金属膜(铝膜)上。这种传感器的优点是量程大和精度高。光栅式传感器应用在程控、数控机床和三坐标测量机构中,可测量静、动态的直线位移和整圆角位移。在机械振动测量、变形测量等领域也有应用。

莫尔条纹

以透射光栅为例,当指示光栅上的线纹和标尺光栅上的线纹之间形成一个小角度θ,并且两个光栅尺刻面相对平行放置时,在光源的照射下,位于几乎垂直的栅纹上,形成明暗相间的条纹。这种条纹称为“莫尔条纹”  。严格地说,莫尔条纹排列的方向是与两片光栅线纹夹角的平分线相垂直。莫尔条纹中两条亮纹或两条暗纹之间的距离称为莫尔条纹的宽度,以W表示。

莫尔条纹

W=ω /2* sin(θ /2)=ω /θ 。[1]

莫尔条纹具有以下特征:

(1)莫尔条纹的变化规律:两片光栅相对移过一个栅距,莫尔条纹移过一个条纹距离。由于光的衍射与干涉作用,莫尔条纹的变化规律近似正(余)弦函数,变化周期数与光栅相对位移的栅距数同步。

(2)放大作用:在两光栅栅线夹角较小的情况下,莫尔条纹宽度W和光栅栅距ω、栅线角θ之间有下列关系。式中,θ的单位为rad

光栅原理的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于光纤光栅原理、光栅原理的信息别忘了在本站进行查找喔。

原文链接:http://www.8178.org/news/show-31870.html,转载和复制请保留此链接。
以上就是关于光栅原理 、光纤光栅原理全部的内容,关注我们,带您了解更多相关内容。
 
标签: 光栅 莫尔 光纤
打赏
0相关评论

推荐资讯
网站首页  |  VIP套餐介绍  |  关于我们  |  联系方式  |  手机版  |  版权隐私  |  SITEMAPS  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报