容斥问题公式是什么?
容斥问题3个公式如下:
1、标准型: |A∪B∪C | = | A | + | B | + | C | - | A∩B | - | B∩C | - | C∩A | + | A∩B∩C |。
2、非标准型:|A∪B∪C | = | A | + | B | + | C | -只满足两个条件的- 2×三个都满足的。
3、列方程组:|A∪B∪C | =只满足一个条件的+只满足两个条件的+三个都满足的。
三集合公式:
1、总数=满足条件A+满足条件B+满足条件C-满足条件AB-满足条件AC-满足条件BC+条件ABC都满足+条件ABC都不满足。
2、总数=满足条件A+满足条件B+满足条件C-满足两个条件-2×三个条件都满足+三个条件都不满足。
3、总数=满足一个条件+满足两个条件+三个条件都满足+三个条件都不满足。
容斥问题公式是什么?
容斥问题公式有:
1.a+b+c+d=I,只喜欢1者+只喜欢2者+3者都喜欢+3者都不喜欢=总集。
2.a+2b+3c=A+B+C,三个集合相加时,喜欢1者的部分加了1次,2者的部分加了2次,喜欢3者的部分加了3次。
3.b+3c=X+Y+Z,题目中的固定表达方式为喜欢A和B的有X人、喜欢A和C的有Y人,喜欢B和C的有Z人。
相关示例:
某校六⑴班有学生45人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?
分析:参加足球队的人数25人为A类元素,参加排球队人数22人为B类元素,参加游泳队的人数24人为C类元素,既是A类又是B类的为足球排球都参加的12人,既是B类又C类的为足球游泳都参加的9人,既是C类又是A类的为排球游泳都参加的8人,三项都参加的是A类B类C类的总和设为X。
注意:这个题说的每人都参加了体育训练队,所以这个班的总人数即为A类B类和C类的总和。
答案:25+22+24-12-9-8+X=45 解得X=3。
三者容斥问题3个公式是什么?
三者容斥问题3个公式如下:
标准型: |A∪B∪C | = | A | + | B | + | C | - | A∩B | - | B∩C | - | C∩A | + | A∩B∩C |。
非标准型:|A∪B∪C | = | A | + | B | + | C | -只满足两个条件的- 2×三个都满足的。
列方程组:|A∪B∪C | =只满足一个条件的+只满足两个条件的+三个都满足的。
在计数时:
必须注意没有重复,没有遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
关于容斥问题公式和两者容斥问题公式的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。