推广 热搜: 韩版  还可  格式  制作工艺  氢气  避暑山庄  收购ACF  求购ACF  回收ACF  液压阀 

正交化 、正交化是什么意思

   日期:2023-04-15     浏览:31    评论:0    
核心提示:正交化步骤正交化正交化是指将线性无关向量系转化为正交系的过程。设{xn}是内积空间H中有限个或可列个线性无关的向量,则必定有H中的规范正交系{en}使得对每个正整数n(当{xn}只含有m个向量,要求n

正交化步骤

正交化

正交化是指将线性无关向量系转化为正交系的过程。设{xn}是内积空间H中有限个或可列个线性无关的向量,则必定有H中的规范正交系{en}使得对每个正整数n(当{xn}只含有m个向量,要求n≤m),xn是e1,e2,…,en的线性组合。

由于把一个正交向量组中每个向量经过单位化,就得到一个标准正交向量组,所以,上述问题的关键是如何由一个线性无关向量组来构造出一个正交向量组,我们以3个向量组成的线性无关组为例来说明这个方法。设向量组线性无关,我们先来构造正交向量组,并且使与向量组等价()。按所要求的条件,是的线性组合,是的线性组合,

为方便起见,不妨设

其中,数值k的选取应满足与垂直,即,注意到

于是得,

从而得,

对于上面已经构造的向量与,再来构造向量,为满足要求,可令,其中,,的选取应满足分别与向量与垂直,

此解得

于是得

容易验证,向量组是与等价的正交向量,若再将单位化,即令

(i=1,2,3)则就是满足要求的标准正交向量组。

施密特正交化

施密特正交化(Schmidt orthogonalization)是求欧氏空间正交基的一种方法。从欧氏空间任意线性无关的向量组α1,α2,……,αm出发,求得正交向量组β1,β2,……,βm,使由α1,α2,……,αm与向量组β1,β2,……,βm等价,再将正交向量组中每个向量经过单位化,就得到一个标准正交向量组,这种方法称为施密特正交化。

正交化怎么计算

求正交化公式:A=h/L。正交化是指将线性无关向量系转化为正交系的过程。设{xn}是内积空间H中有限个或可列个线性无关的向量,则必定有H中的规范正交系{en}使得对每个正整数n(当{xn}只含有m个向量,要求n≤m),xn是e1,e2,…,en的线性组合。

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。

施密特正交化是什么?

对于n阶矩阵,正交变换求正交矩阵时,如果同一特征值的特征向量没有正交,则需要施密特正交化使其正交。

施密特正交化(Schmidt orthogonalization)是求欧氏空间正交基的一种方法。从欧氏空间任意线性无关的向量组α1,α2,……,αm出发,求得正交向量组β1,β2,……,βm,使由α1,α2,……,αm与向量组β1,β2,……,βm等价,再将正交向量组中每个向量经过单位化,就得到一个标准正交向量组,这种方法称为施密特正交化。

线性代数:

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。

线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

正交化的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于正交化是什么意思、正交化的信息别忘了在本站进行查找喔。

原文链接:http://www.8178.org/news/show-35591.html,转载和复制请保留此链接。
以上就是关于正交化 、正交化是什么意思全部的内容,关注我们,带您了解更多相关内容。
 
标签: 正交 向量 施密特
打赏
0相关评论

推荐资讯
网站首页  |  VIP套餐介绍  |  关于我们  |  联系方式  |  手机版  |  版权隐私  |  SITEMAPS  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报